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The use of a simple approximate matrix in the least-squares determination of positional parameters 
with X-ray data is discussed. In the approximate matrix the summation over the structure-factor 
derivatives is no longer carried out, but ri~ther, expected values of the matrix elements are used. The 
approximate matrix consists of a 3 x 3 block-diagonal matrix. Each block contains the metric tensor 
of the crystal, a factor being the square of the number of the electrons of the particular atom, and a 
universal scale factor. The approximation becomes more legitimate as more structure factors are used. 
It is shown theoretically that the quality of the approximation can be improved when fewer parameters 
are refined. Hence the approximation is improved when the number of parameters is reduced by 
introducing stereochemical restraints. The approximation is tested numerically by means of criteria 
which have been introduced by Sparks. It is concluded that the approximation is sufficient in the 
initial stages of a refinement for 1000, 2000, and 5000 data with about 27, 47, and 80 parameters respec- 
tively. 

Introduction 

In least-squares refinement of crystal structures one 
often does not use the full matrix in the normal equa- 
tions, but rather approximations (diagonal matrix, 
block-diagonal matrix etc.) in order to save storage 
space and computing time. As is well known, the use 
of approximations is permissible because the least- 
squares postulate only requires that the sequence of 
the right-hand sides of the normal equations shall con- 
verge towards zero (at the correct structure minimum). 
The form of the matrix is unimportant as long as it 
ensures that convergence occurs at the correct structure 
minimum. 

Recently a further, very rough approximation for 
the normal matrix of positional parameters of the single 
atoms was described by Scheringer (1965a). This ap- 
proximation, however, was intended to be used for re- 
adjusting positional parameters of the single atoms by 
means of a set of stereochemical restraints. In the 
present paper we shall investigate how far this approx- 
imation may also be used for the direct refinement of 
positional parameters. As the calculation of the ap- 
proximate matrix is very rapid, one could save much 
computing time. The approximation will normally be 
too poor for the refinement of the parameters of the 

single atoms, but it can be improved by introducing 
stereochemical restraints. In the following we shall 
establish this theoretically; further we shall give some 
criteria to judge the quality of a given approximation 
[similar to those given by Sparks (1961)], and we shall 
give some numerical values of the criteria with two 
structures. With the numerical results thus obtained 
we shall estimate the range (number of data, number 
of parameters) in which the approximation may be 
used. 

The approximate matrix 

For positional parameters of the single atoms the nor- 
mal matrix A can be approximated by 

Q=kZH (1) 

(cf. Scheringer, 1965a). k is a scale factor which can 
be roughly determined by setting trace (A) equal to 
trace (Q). (How the scale can be improved will be dis- 
cussed below.) ZH is a 3 x 3 block-diagonal matrix 
with elements Za~hst for the ith block. Z~ is the num- 
ber of electrons of the ith atom; hst is a component 
of the metric tensor of the unit cell. Q is positive- 
definite and symmetric. The assumptions made in the 
approximation are: 



C. S C H E R I N G E R  663 

(i) The scattering curves f of all atoms have the same 
shape: j~ = f .  Z~ (unitary form factors). 

(ii) The structure-factor data, expressed as points in 
reciprocal space, are of equal accuracy in each 
infinitesimal spherical shell of reciprocal space 
(and hence have to be given a uniform weight in 
each shell). 

(iii) The density of the structure-factor points in recip- 
rocal space is infinitely high. 

If there are chemically different atoms and aniso- 
tropic vibrations present, the first assumption means 
a small systematic deviation from the true structure. 
The second assumption contains an experimental con- 
dition which can often be fulfilled. The third assump- 
tion becomes better as more data become available, 
i.e. the larger the unit cell. 

Let the normal equations for the single-atom par- 
ameters (without constraints) be 

A e r r e e = B  . (2) 

(B can never be expressed by an approximation, be- 
cause the summation terms in B contain the measured 
data, hence no averaging is possible. Thus B has always 
to be fully computed.) Using Q instead of A we obtain 
different shifts E free, which we denote by ~¢~. Similarly 
to (2) we now have 

Q ~ e ~ = B .  (3) 

From (2) and (3) it follows that 
E~ee---- Q - I A ~  free . (4) 

If we introduce stereochemical restraints, the equa- 
tions of constraint have to be put into the form 

e c°n = RE red + R ° (5) 

(Scheringer, 1965a). Eeon are the shifts of the single 
atoms under the restraints, e red are the shifts which 
are determined in the reduced system of the normal 
equations. With the reduced approximate matrix 
Qrea = RTQR we obtain for the reduced shifts 

E~d = Q r e d - 1  AredEred (6) 

similar to (4). A red-- RTAR (the superscript T denotes 
the transposed matrix). 

It is intended to use the approximation mainly in 
the initial stage of refinement. Here it is meaningful 
to introduce as many constraints as possible in order 
to improve convergence. At the same time many con- 
straints improve the quality of the approximation, as 
we shall show below. 

In an actual computation with the approximate 
matrix, the scale factor k has first to be determined 
by a single computation of the trace (or some diagonal 
elements) of the true normal matrix. After the scale 
is adjusted by setting trace (Q)=t race  (A), a partial 
shift factor has normally to be applied. According to 
Sparks (1961) the optimum shift factor is 

2 
qop = )~max-k" 2min  " (7) 

~,max and J.min a r e  the maximum and minimum eigen- 
values of Q-1A respectively. Values of r/op will be given 
below. In addition, the scale could be controlled by 
allowing the shifts not to exceed a certain preset value, 
e.g. 0.1 A. 

Estimated standard deviations for the constrained 
parameters of the single atoms may be calculated ac- 
cording to 

o ' ~ ( ~ ; e ° n ) = { [ R ( R T A R ) - a R T ] i ~  Z w(AF)Z/(n-p)}l/2 (8) 

(of. Linnik, 1961). Z w(AF) z refers to structure factors; 
n is the number of independent data, and p the number 
of the reduced parameters. In (8) it is assumed that 
the constraints are absolutely valid, whereas in prac- 
tice they are based on experimental data. Furthermore, 
we have only Q instead of A. Nevertheless (8) may be 
used with these limitations as a rough estimate of 
O'~(E e°n) in the initial stage of the refinement. 

Criteria for the quality of an approximation 

Sparks (1961) developed criteria (and applied them to 
the example of anthracene) which describe the quality 
of an approximate matrix compared to the full matrix. 
These criteria are based on the eigenvalues 2~ of Q-aA 
(which are all positive). In order to be able to compare 
our results with Sparks's anthracene values, we shall 
use his / t  criterion: 

22min  

/t is a measure of the speed of convergence of an ap- 
proximate matrix towards the true matrix. 

As a further criterion we use the condition number 
), of Q-1A 

~,min 
7 - -  ~max ' y - ~ I  . 

The better the approximate matrix, the closer y is to 1. 
The values of/z and ), do not depend on the shift factor 
r/op, but it is assumed that r/or is applied./z and y are 
invariant with respect to any non-singular linear trans- 
formation of the parameter shifts ~. This means that 
the values of kt and ~, do not depend on the particular 
description that has been chosen for the structure. 

In order to recognize immediately how the shifts 
are influenced by the approximation we also use an 
R criterion for the elements of c-r/ovCQ 

R(e)= { S (~- ~op~Q)2/S ~2},/z, 
e being e tree or e red respectively. A disadvantage of 
the R(~) criterion is that by even a few different signs 
of e and ee the R(e) value is rather more increased 
than the quality of the approximate matrix is dimin- 
ished. A further disadvantage is that the R(e) value is 
not invariant with respect to non-orthogonal linear 
transformations. Thus the R(e) value depends on the 
particular description chosen for the structure. There- 
fore we attach more significance to the ~ and 7 criteria 
than to the R(e) values. 
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The reduction of the set of parameters 

In the following we want to compare the qualities of 
the approximations Q and Qrea(=R~'QR). Both the 
/t and y criteria show that an approximation becomes 
better the less the spectrum of the eigenvalues of Q-1A 
spreads. With the introduction of equations of con- 
straint the spectrum will in general be narrowed, i.e. 
the following inequalities hold 

2rain {Qred-lAred} > &rain {Q-IA} 
~max{Qred_lAred} _< ~ .max{Q_lA}.  (7) 

The formal proof of the inequalities (7) is given in the 
Appendix. We note that (7) does not only hold for the 
approximation Q, but for any positive-definite and 
symmetric approximate matrix. Although the number 
and the type of the constraints do not enter in the proof 
of (7), it is obvious that the quality of the approxima- 
tion becomes better as more constraints are introduced. 
The relations (7) can also be interpreted in a different 
manner: By Qred and A rea we may understand prin- 
cipal submatrices of Q and A respectively, where Qred 
must be a closed block on the diagonal of Q (not cor- 
related to the residual matrix). The relations (7) hold 
for any positive-definite and symmetric matrix in this 
second interpretation. This is shown in the Appendix. 
The relations (7), interpreted in this way, are important 
for a filter technique for positional parameters (Sche- 
ringer, 1968): By filtering, some of the eigenshifts are 
excluded from the refinement. This means that the 
(diagonal) matrix used is a submatrix of the full diag- 
onal matrix, and (7) can be applied. Therefore the 
quality of the approximation Q is generally improved 
when the filter technique is applied. 

Numerical results 

We have tested the approximation Q by using the 
above criteria with the structures of phenol (PH) 
(Scheringer, 1963), and of 1,3,5-triphenylbenzene (TR) 
(Farag, 1954). For comparison we have also computed 
values of the criteria for the diagonal approximation 
with structure-factor derivatives. (With the two struc- 
tures, the diagonal matrix is a reasonable approxima- 
tion, since all angular lattice constants are equal to 
90 °.) For both structures a poor, but still refinable trial 
structure has been chosen. Both sets of X-ray data are 
three-dimensional, but not very accurate. In order to 
examine the influence of the number of data, we have 
computed values of the criteria for the full sets of data 
(PH, 679 data; TR, 480 data), and for reduced sets 
of low-angle data (PH, 250 data; TR, 200 data). All 
data were given unit weight. In order to examine the 
influence of the number of parameters, we have com- 
puted the matrix with the following numbers of par- 
ameters of the PH and TR trial structure respectively: 
PH, 2 molecules (12 rigid-body parameters, 42 single- 
atom parameters; Table 1), and 1 molecule (6 and 21 
parameters respectively; Table 2); TR, 3 phenyl groups 

(18 rigid-body parameters, 54 single-atom parameters; 
Table 3), and 1 group (6 and 18 parameters respec- 
tively; Table 4). We determined the scale factor k by 
setting trace (Q) equal to trace (A). In Tables 1-4 
values of/t, 7, r/op, and R(e) are listed. 

Table 1. Values of~t, y, r/op and R for phenol 

Full set of data: 679 reflexions; reduced set: 250 reflexions. 
Number  of single-atom parameters 42 (14 atoms); number  of 
rigid-body parameters 12 (2 molecules). 

There are two rows of values listed for each set of param- 
eters: the upper row refers to the approximation Q, the lower 
row to the structure-factor diagonal matrix. The same holds 
for Tables 2, 3, and 4. 

Phenol, 679 data /, y r/op R(e) 
Single-atom 0-32 0.14 0.83 0.41 
parameters 0.45 0.18 0-94 0.39 

Reduced 0.53 0.21 0.82 0.74 
parameters 0.81 0.29 0-96 0-76 

Phenol, 250 data 
Single-atom 0.11 0.05 0.77 0.58 
parameters 0.12 0.06 0.83 0.55 

Reduced 0-44 0.18 0.73 0-89 
parameters 0.61 0.23 0-83 0.85 

Table 2. Values of~t, ~,, flop and R for phenol 

The same as Table 1, except: number  of single-atom param- 
eters 21 (7 atoms); number  of rigid-body parameters 6 (1 
molecule). 

Phenol, 679 data • /z ~, r/op R(e) 
Single-atom 0.56 0.22 0-76 0.39 
parameters 0.89 0-31 0.95 0.35 

Reduced 1.94 0.49 0-80 0.85 
parameters 3.04 0.60 0.87 0.70 

Phenol, 250 data 
Single-atom 0.14 0.06 0.76 0.67 
parameters 0.18 0.08 0.92 0-65 

Reduced 1.12 0.36 0.77 1-13 
parameters 1.42 0.42 0.85 0.98 

Table 3. Values of~t, y, r/op and R for 
1,3,5- trip hen y lben zene 

Full set of data: 480 reflexions; reduced set: 200 reflexions. 
Number  of single-atom parameters 54 (18 atoms); number  of 
rigid-body parameters 18 (3 phenyl groups). 

1,3,5-Triphenylbenzene, 
480 data It ~, r/op R(e) 
Single-atom 0.18 0.08 1.04 0-46 
parameters 0.20 0.09 0.93 0.47 

Reduced 0.22 0.10 1-00 0.35 
parameters 0.26 0.11 0.94 0.40 

1,3,5-Triphenylbenzene, 
200 data 
Single-atom 0.06 0-03 0.71 0.68 
parameters 0.06 0-03 0.69 0.67 

Reduced 0.12 0.06 0.62 0.96 
parameters 0-16 0.07 0-69 1.03 
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Table 4. Values of~u, ~, PTop and R for 
1,3,5-triphenylbenzene 

The same as Table 3, except: number of single-atom param- 
eters 18 (6 atoms); number of rigid-body parameters 6 (1 
phenyl group). 
1,3,5-Triphenylbenzene, 

480 data p y !/oo R(e) 
Single-atom 0.82 0.29 0.97 0-44 
parameters 0.84 0.30 0.91 0.45 

Reduced 1.30 0-39 0-93 0.25 
parameters 1.37 0.41 0.87 0.27 

1,3,5-Triphenylbenzene, 
200 data 
Single-atom 0.14 0.07 0.83 0.60 
parameters 0-17 0.08 0.87 0.54 

Reduced 0-18 0.08 0.66 0.80 
parameters 0.22 0.10 0.72 0.76 

The values of/U and ~ are in all cases better for the 
smaller sets of parameters (Tables 2 and 4) than for 
the larger sets (Tables 1 and 3), as predicted by the 
theory; cf. relations (7). (The approximate matrix Qrea 
used in the case of Table 2 is a closed submatrix of 
the approximate matrix Q used in the case of Table 1. 
The same holds for Tables 4 and 3.) )' is roughly in- 
versely proportional to the number of equivalent par- 
ameters (i.e. to the number of groups or atoms re- 
spectively). Similarly the values of/U and ), are in all 
cases better for the rigid-body parameters than for the 
single-atom parameters, as predicted by the theory; 
cf. relations (7). With the rigid-body parameters,/U is 
larger by a factor of about 1.3-5.0, ), by a factor of 
about 1.5-8.0. The R(0-values are often worse with 
the rigid-body parameters than with the single-atom 
parameters. Probably the description of the structure 
with rigid-body parameters causes those shifts to be- 
come numerically large which are likely to have an 
incorrect sign. In all cases the full sets of data give 
better values of the criteria than the reduced sets. It 
is worthy of note that the results obtained with the 
diagonal matrix, computed with SF derivatives, are 
insignificantly better than those obtained with the ap- 
proximation Q. The values of/U and ), for the SF 
diagonal matrix are in all cases larger by a factor of 
no more than 1.54. 

In Table 5 we give a survey of the incorrect signs 
of the shifts which result from the use of the approx- 

imate matrices. The percentage of incorrect signs is 
least with the rigid-body parameters and with the full 
sets of data ( P H + T R ,  Q, 12.9%; P H + T R ,  SF diag- 
onal matrix, 9-2%). Out of 522 signs with the SF diag- 
onal matrix only 3 signs more were correctly computed 
than with the approximate matrix Q. 

We further conclude from the tables that the opti- 
mum shift factor r/op has an average value of 0.90 for 
the full sets of data, and an average value of 0.75 for 
the reduced sets of data. 

It is interesting to compare our values of/U and y 
(Tables 1 and 3) with those computed by Sparks (1961, 
Table 1) for the SF diagonal approximation in the case 
of anthracene. The tables show that our values are 
considerably better. The reasons are as follows: The 
unit cell of anthracene is strongly monoclinic (~ = 124 °) 
and with the pure diagonal approximation those off- 
diagonal terms which arise from the metric of the cell 
were neglected. Moreover, the anisotropic thermal par- 
ameters always give rise to non-vanishing off-diagonal 
terms (cf. Scheringer, 1966), which were neglected. 
Finally, in the anthracene case there were 63 param- 
eters, which is more than we used in our Tables 1 and 
3. This also may reduce the quality of the approxima- 
tion with anthracene. 

The values of/U, )', and r/op in Tables 1 and 3 for the 
full sets of data are about as good as those of the 9 x 9 
block-diagonal approximations, which are often used 
in structure refinement (such as the approximations by 
Cruickshank and Rollett; cf. Sparks, 1961, Table 1, 
entries 3 and 4). Thus we conclude that Q is a sufficient 
approximation if there is a sufficient number of data 
and a sufficient number of stereochemical restraints. 
Here we are thinking of organic structures with many 
atoms and more than 1000 data. 

A rough estimate of the number of parameters to be 
admitted for a given number of data may be gained 
as follows: We consider ),=0.2 as sufficient for the 
quality of the approximation. We describe the influence 
of the number of the parameters p by y =  Ca/p, and 
the influence of the number of data n by ) ' = l -  
exp ( - C 2  • n). From Tables 1 and 3 we extract ~ = 0.2 
for about 20 parameters and 700 data. These values 
determine the constants Ca and C2, and we obtain for 
1000, 2000, 5000 and 10000 data 27, 47, 80 and 96 
parameters respectively. This estimate of the number 
of admissible parameters is rather too low. 

Table 5. Incorrect signs of  the parameter shifts computed with the approximate matrices 

The numbers in brackets are percentage values. 

Full sets of data (679 and 480 respectively) 
Number of shifts 
Incorrect signs, Q 
Incorrect signs, SF diagonal matrix 

Reduced sets of data (250 and 200 respectively) 
Incorrect signs, Q 
Incorrect signs, SF diagonal matrix 

Single-atom Reduced Single-atom and 
parameters parameters reduced parameters 

207 54 261 
34 (16.4) 7 (12.9) 41 (15.7) 
34 (16-4) 5 (9.2) 39 (14-9) 

54 (26.1) 13 (24.1) 67 (25-7) 
54 (26.1) 12 (22.2) 66 (25.3) 
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Appendix 

Proof of  the relations (7)for the case of  constraints being 
applied 

Let F be any non-singular linear transformation, 
and let Q F = F T Q F ,  and AF=FTAF;  then we obtain 

Q~-~AF=F-1Q-1AF; 2,(Q~IAF)=2,{Q-aA) .  (A1) 

With Q positive-definite and symmetric we can al- 
ways find a matrix F such that QF = I  (where I is the 
unit matrix). (One possible way to determine F accord- 
ing to Q F = I  is outlined by Sparks, 1961.) With Q F = I  
we have 

Qrea-lAred = (RTQR)-XRTAR 
= (RTFT-1Q~,F-1R)-IRTFT-1A~,F-1R 
= (S TS)-I S TAFS 

by using S = F-aR. Hence the following relation holds 
for the eigenvalues" 

2~{Qrea-IAreO)=A~{(STS)-ISTAFS} . (A2) 

Moreover, with Q E = I  and with (A1) we have 

2,(Q-~A) = 2,{AF). (A3) 

If we now make use of a proof given in another paper 
(Scheringer, 1965a, Appendix), the relations (7) follow 
from (A2) and (A3). 

Proof of  the relations (7) for the case of  the parameters 
forming a subset 

As Q-I is positive-definite and symmetric, Q-1A is 
also positive-definite. Let Qrea-1 be a non-correlated 
principal submatrix of Q-l ,  and A rea the corresponding 
principal submatrix of A (A rea generally is correlated), 
then Qrea-lArea is a principal submatrix of Q-1A. 
According to the Sturm-Hurwitz theorem (cf. Sche- 
ringer, 1965b) the maximum (minimum) eigenvalue of 
a positive-definite matrix is always larger (smaller) than 
or equal to the maximum (minimum) eigenvalue of any 
principal submatrix. Hence the relations (7) hold. 
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Hydrogen Bond Studies. XXIII.* The Crystal Structure of Potassium Hydrogen Diformate 

BY GUNILLA LARSSON AND INGER NAHRINGBAUER 
Institute of  Chemistry, University of  Uppsala, Uppsala, Sweden 

(Received 3 July 1967) 

The crystal structure of potassium hydrogen diformate has been determined at room temperature from 
three-dimensional single-crystal X-ray data. The crystals are orthorhombic, space group Pbca, with 
eight KH(HCOO)2 units in a unit cell with the dimensions a=  17.708, b=7.510, c=7.377 A. Least- 
squares refinements with allowance for anisotropic thermal motion gave a final discrepancy index of 
0-073. Two crystallographically non-equivalent formate groups are linked into a dimer by a short 
hydrogen bond (2.45 A). The potassium ions occur in puckered layers perpendicular to the a axis. 
The charged dimers and the metal ions are joined by ionic interaction, and the structure is built up of 
alternating layers of potassium ions and formate dimers. Each potassium ion is surrounded by eight 
oxygen atoms at the vertices of a distorted square antiprism (K-O distances: 2-77-3.06 A). The C-O 
bond lengths in one of the non-equivalent formate groups are 1"24 and 1"25 A, and in the other 1"22 
and 1.26/~. The corresponding O-C-O angles are 124 and 125 o. 

Introduction 

Several acid salts of monocarboxylic acids with alkali 
metals have been studied by Speakman and co-workers 

* Part XXII: Liminga & Mehlsen Sorensen (1967). 

(e.g. Goli6 & Speakman, 1965). The negative ions in 
these compounds are linked as dimers by short hydro- 
gen bonds which in some cases have been regarded as 
symmetrical. As potassium hydrogen diformate, 
KH(HCOO)2, is one of the simplest acid salts a deter- 
ruination of its structure is of interest. Moreover, this 


